Scatter Plot, Correlation

&

Regression Line

What is a **Scatter Plot**?

A **Scatter Plot** is a plot of ordered–pairs (x, y) where the horizontal axis is used for the x variable and the vertical axis is used for the y variable.

How is **Scatter Plot** helpful?

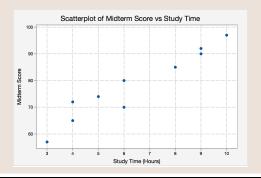
The pattern of the plotted points in a **Scatter Plot** will enable us to see whether there is a relationship between the two variables.

The study time and midterm exam score for a random sample of 10 students in a statistic course are shown in the following table.

Student	Α	В	С	D	Е	F	G	Н	ı	J
Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Draw the scatter plot.

We plot the ordered-pair (3,57) for student A, ordered-pair (4,65) for student B, and so on to draw the **Scatter Plot**.



What is the **Regression Line**?

The Regression Line is the graph of the Regression Equation.

What is a **Regression Equation**?

The Regression Equation algebraically describes the best linear relationship between two variables x and y. The Regression Equation is usually written in the following form.

$$\hat{y} = a + bx$$

How do we compute a and b?

- ► Compute $\sum x$, $\sum y$, and $\sum xy$.
- ► Compute $\sum x^2$, and $\sum y^2$.
- Now we use the formulas below.

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$
and

$$a = \frac{\left(\sum y\right)\left(\sum x^2\right) - \left(\sum x\right)\left(\sum xy\right)}{n\left(\sum x^2\right) - \left(\sum x\right)^2}$$

where n is the number of ordered-pairs.

The study time and midterm exam score for a random sample of 10 students in a statistic course are shown in the following table.

Student	А	В	С	D	E	F	G	Н	ı	J	
Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9	
Midterm Score; y	57	65	72	74	70	80	85	90	97	92	

Find the equation of the regression line in which the x variable is the study time, and y variable is the midterm score. Draw the regression line and scatter plot in the same coordinate system.

We first identify that
$$n = 10$$
, then find and verify that $\sum x = 64$, $\sum y = 782$, $\sum xy = 5277$, $\sum x^2 = 464$, $\sum y^2 = 62632$, and then we apply these values in the formula

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$= \frac{10(5277) - (64)(782)}{10(464) - (64)^2}$$

$$= \frac{2722}{544}$$

$$\approx 5.004$$

Solution Continued:

and

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$= \frac{(782)(464) - (64)(5277)}{10(464) - (64)^2}$$

$$= \frac{25120}{544}$$

$$\approx 46.176$$

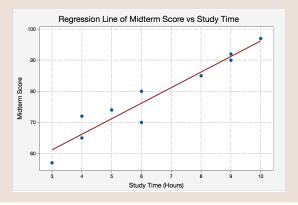
So the equation of the regression line is

$$\hat{y} = a + bx$$

= 46.176 + 5.004x

Solution Continued:

Here is the graph of the regression line as well as the scatter plot.



What is a **Correlation**?

A **Correlation** between two variables is when there is an apparent association between the values of one variable with the corresponding values from the other variable.

What is the **Linear Correlation Coefficient**?

The Linear Correlation Coefficient is a numerical value that measures the strength of the linear correlation between the paired x and y for all values in the sample. We denote this value by r.

What are the properties of r?

- ▶ $-1 \le r \le 1$
- It is not designed to measure the strength of a nonlinear relationship.
- It is very sensitive and changes value if the sample contains any outliers.
- ▶ The Linear Correlation Coefficient is considered significant when |r| is fairly close to 1.

How do we compute r?

- ► Compute $\sum x$, $\sum y$, and $\sum xy$.
- ► Compute $\sum x^2$, and $\sum y^2$.
- Now we use the formula

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}$$

where n is the number of ordered-pairs.

It is worth noting that r is usually calculated with a computer software or a calculator.

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Student	Α	В	С	D	Е	F	G	Н	ı	J
Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Find the value of linear correlation coefficient r.

We first identify that
$$n=10$$
, then find and verify that $\sum x=64$, $\sum y=782$, $\sum xy=5277$, $\sum x^2=464$, $\sum y^2=62632$, and then we apply these values in the formula

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}$$

$$= \frac{10(5277) - (64)(782)}{\sqrt{10(464) - (64)^2} \sqrt{10(62632) - (782)^2}}$$

$$= \frac{2722}{\sqrt{544} \sqrt{14796}}$$

$$\approx 0.959$$

What is the **Coefficient of Determination**?

The Coefficient of Determination is a numerical value usually provided in percentage that indicates what percentage of the dependent variable y is explained by the independent variable x. We denote this value by r^2 .

How do we compute r^2 ?

We simply square the value of r and then convert it to a percentage by moving the decimal point two places to the right.

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Student	Α	В	С	D	Е	F	G	Н	ı	J
Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Find the value of coefficient of determination r^2 and explain what this number describes in the context of this example.

We have already used this example and found the value of the linear correlation coefficient r.

We got $r \approx 0.959$.

Now we square this number to get the coefficient of determination.

$$r^2 = (0.959)^2$$

= 0.919681
 ≈ 0.920
 $\approx 92.0\%$

So 92.0% of the midterm scores are explained by the study time.

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Student	А	В	С	D	E	F	G	Н	I	J
Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Find the value of the expression $r \cdot \sqrt{\frac{n-2}{1-r^2}}$, rounded to 3-decimal places when needed.

We already know that n = 10, and have computed r = 0.959, and $r^2 = 0.920$, now we apply these values to the expression we need to compute.

$$r \cdot \sqrt{\frac{n-2}{1-r^2}} = 0.959 \cdot \sqrt{\frac{10-2}{1-0.920}}$$

$$= 0.959 \cdot \sqrt{\frac{8}{0.08}}$$

$$= 0.959 \cdot \sqrt{100}$$

$$= 0.959 \cdot 10$$

$$= 9.59$$

How do we make **prediction**?

- ▶ When linear correlation is significant, use $\hat{y} = a + bx$. Plug in the given x value to find the prediction value y.
- ▶ When linear correlation is not significant, use \overline{y} .

Example:

Eight pairs of data yield the regression line equation $\hat{y} = 55.6 + 2.8x$ with $\bar{y} = 71.5$.

What is the best predicted value for y for x = 5.5 if we assume the linear correlation is significant?

Since the linear correlation coefficient is significant, we use the equation of the regression line $\hat{y} = 55.6 + 2.8x$. and plug in x = 5.5 to find the prediction value.

$$\hat{y} = 55.6 + 2.8x$$

$$= 55.6 + 2.8(5.5)$$

$$= 55.6 + 15.4$$

$$= 71$$

So, our prediction value is 71.

Ten pairs of data yield the regression line equation $\hat{v} = 73.5 - 4.5x$ with $\bar{v} = 58.5$.

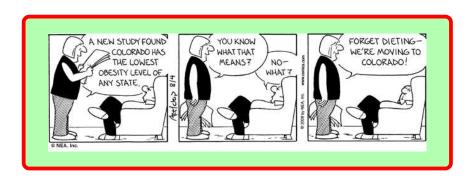
What is the best predicted value for y for x = 4.5 if we assume the linear correlation is not significant?

Solution:

Since the linear correlation coefficient is not significant,

we use \bar{y} as the prediction value regardless of the value of x.

So, our prediction value is 58.5.



Causation vs Correlation